# Integration on Manifolds: Compact Support

Compact support for a metric of a manifold is often required to preform integration on the manifold. However, why is it required? Can one preform integration on a manifold without compact support? We will explore those questions here!

# Feynman Rules for Ordinary Integrals

Path integral quantum field theory, perhaps single handedly constructed by Richard Feynman, remains both elusive to undergraduates that wish to study the subject and immensely useful for performing the calculations found in quantum field theory due to the path integral formulation being manifestly symmetric between space and time. Here, we will enter the world of path integral quantum field theory by meticulously performing the calculations so that it is accessible to an advanced undergraduate.

# Tensorial Propagators (Part III)

In Part I, we discovered that tensorial propagators in quantum field theory are often non-invertible which poses an issue when one is trying to determine the form of the propagator. Then, in Part II, we discussed possible techniques involving both symmetries and invariants of the Lagrangian. Here, we aim to reveal how invariant quantities may be useful for propagators, and gauge fields specifically, and we will ultimately derive the form of the photon propagator.

# A Weak Derivation of the Momentum Operator

Here is a cute trick to derive the momentum operator in quantum mechanics. Usually, we taken this for a given or a definition, however there are ways to prove the relationship. Here we explore the relationship between position and momentum using Fourier Transforms.

# Path Integral Free Propagator

In quantum field theory, the propagator gives a probability amplitude for a particle traveling from some point $(t_i,x_i)$ to $(t_f,x_f)$ with a certain energy and momentum. These propagators are the first steps into quantum field theory, I aim to bring these to the masses. The one that is most interesting and easy to grasp is the free propagator for a free field theory. The following derivation is inspired by Anthony Zee’s Quantum Field Theory in a Nutshell of UC Santa Barbara.

# Proof of Euler’s Formula

Around 1740, Leonard Euler discovered a formula that connected functions of complex arguments to trigonometric functions, effectively forming a link between analytic functions and geometric functions which eventually extended to topology, differential equations, and mathematical physics. All of this began with one simple formula, lauded by Richard Feynman as “the most remarkable formula in mathematics,” and it is

$$e^{ix}=\cos(x)+i\sin(x), \text{ with } x\in\mathbb{R}.$$