Feynman Rules for Ordinary Integrals

Path integral quantum field theory, perhaps single handedly constructed by Richard Feynman, remains both elusive to undergraduates that wish to study the subject and immensely useful for performing the calculations found in quantum field theory due to the path integral formulation being manifestly symmetric between space and time. Here, we will enter the world of path integral quantum field theory by meticulously performing the calculations so that it is accessible to an advanced undergraduate.

Continue reading Feynman Rules for Ordinary Integrals

Why We Suck at Division & Subtraction Inherently

Disclaimer: I am not at all a neuroscientist. I’m just a guy that has an interest in it and saw a pretty cute connection.

Of the different forms of arithmetic, I believe that subtraction and division, which if we were being honest is just a glorified form of subtraction, are the most difficult manipulations to perform $-$ why, you might ask, well I believe the reason is due to object permanence.

Continue reading Why We Suck at Division & Subtraction Inherently

Path Integral Free Propagator

In quantum field theory, the propagator gives a probability amplitude for a particle traveling from some point $latex (t_i,x_i)$ to $latex (t_f,x_f)$ with a certain energy and momentum. These propagators are the first steps into quantum field theory, I aim to bring these to the masses. The one that is most interesting and easy to grasp is the free propagator for a free field theory. The following derivation is inspired by Anthony Zee’s Quantum Field Theory in a Nutshell of UC Santa Barbara.

Continue reading Path Integral Free Propagator

Proof of Euler’s Formula

Around 1740, Leonard Euler discovered a formula that connected functions of complex arguments to trigonometric functions, effectively forming a link between analytic functions and geometric functions which eventually extended to topology, differential equations, and mathematical physics. All of this began with one simple formula, lauded by Richard Feynman as “the most remarkable formula in mathematics,” and it is

$$e^{ix}=\cos(x)+i\sin(x), \text{ with } x\in\mathbb{R}. $$

Continue reading Proof of Euler’s Formula